23 research outputs found

    Evaluating privacy-preserving record linkage using cryptographic long-term keys and multibit trees on large medical datasets.

    Get PDF
    Background: Integrating medical data using databases from different sources by record linkage is a powerful technique increasingly used in medical research. Under many jurisdictions, unique personal identifiers needed for linking the records are unavailable. Since sensitive attributes, such as names, have to be used instead, privacy regulations usually demand encrypting these identifiers. The corresponding set of techniques for privacy-preserving record linkage (PPRL) has received widespread attention. One recent method is based on Bloom filters. Due to superior resilience against cryptographic attacks, composite Bloom filters (cryptographic long-term keys, CLKs) are considered best practice for privacy in PPRL. Real-world performance of these techniques using large-scale data is unknown up to now. Methods: Using a large subset of Australian hospital admission data, we tested the performance of an innovative PPRL technique (CLKs using multibit trees) against a gold-standard derived from clear-text probabilistic record linkage. Linkage time and linkage quality (recall, precision and F-measure) were evaluated. Results: Clear text probabilistic linkage resulted in marginally higher precision and recall than CLKs. PPRL required more computing time but 5 million records could still be de-duplicated within one day. However, the PPRL approach required fine tuning of parameters. Conclusions: We argue that increased privacy of PPRL comes with the price of small losses in precision and recall and a large increase in computational burden and setup time. These costs seem to be acceptable in most applied settings, but they have to be considered in the decision to apply PPRL. Further research on the optimal automatic choice of parameters is needed

    A three-way comparative genomic analysis of Mannheimia haemolytica isolates

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Mannhemia haemolytica </it>is a Gram-negative bacterium and the principal etiological agent associated with bovine respiratory disease complex. They transform from a benign commensal to a deadly pathogen, during stress such as viral infection and transportation to feedlots and cause acute pleuropneumonia commonly known as shipping fever. The U.S beef industry alone loses more than one billion dollars annually due to shipping fever. Despite its enormous economic importance there are no specific and accurate genetic markers, which will aid in understanding the pathogenesis and epidemiology of <it>M. haemolytica </it>at molecular level and assist in devising an effective control strategy.</p> <p>Description</p> <p>During our comparative genomic sequence analysis of three <it>Mannheimia haemolytica </it>isolates, we identified a number of genes that are unique to each strain. These genes are "high value targets" for future studies that attempt to correlate the variable gene pool with phenotype. We also identified a number of high confidence single nucleotide polymorphisms (hcSNPs) spread throughout the genome and focused on non-synonymous SNPs in known virulence genes. These SNPs will be used to design new hcSNP arrays to study variation across strains, and will potentially aid in understanding gene regulation and the mode of action of various virulence factors.</p> <p>Conclusions</p> <p>During our analysis we identified previously unknown possible type III secretion effector proteins, clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated sequences (Cas). The presence of CRISPR regions is indicative of likely co-evolution with an associated phage. If proven functional, the presence of a type III secretion system in <it>M. haemolytica </it>will help us re-evaluate our approach to study host-pathogen interactions. We also identified various adhesins containing immuno-dominant domains, which may interfere with host-innate immunity and which could potentially serve as effective vaccine candidates.</p

    An atlas of over 90.000 conserved noncoding sequences provides insight into crucifer regulatory regions

    Get PDF
    Despite the central importance of noncoding DNA to gene regulation and evolution, understanding of the extent of selection on plant noncoding DNA remains limited compared to that of other organisms. Here we report sequencing of genomes from three Brassicaceae species (Leavenworthia alabamica, Sisymbrium irio and Aethionema arabicum) and their joint analysis with six previously sequenced crucifer genomes. Conservation across orthologous bases suggests that at least 17% of the Arabidopsis thaliana genome is under selection, with nearly one-quarter of the sequence under selection lying outside of coding regions. Much of this sequence can be localized to approximately 90,000 conserved noncoding sequences (CNSs) that show evidence of transcriptional and post-transcriptional regulation. Population genomics analyses of two crucifer species, A. thaliana and Capsella grandiflora, confirm that most of the identified CNSs are evolving under medium to strong purifying selection. Overall, these CNSs highlight both similarities and several key differences between the regulatory DNA of plants and other species

    Hard Selective Sweep and Ectopic Gene Conversion in a Gene Cluster Affording Environmental Adaptation

    Get PDF
    13 Págs., 7 Figs., 6 Tabls. 9 Pag., 8 Fig. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Among the rare colonizers of heavy-metal rich toxic soils, Arabidopsis halleri is a compelling model extremophile, physiologically distinct from its sister species A. lyrata, and A. thaliana. Naturally selected metal hypertolerance and extraordinarily high leaf metal accumulation in A. halleri both require Heavy Metal ATPase4 (HMA4) encoding a PIB-type ATPase that pumps Zn2+ and Cd2+ out of specific cell types. Strongly enhanced HMA4 expression results from a combination of gene copy number expansion and cis-regulatory modifications, when compared to A. thaliana. These findings were based on a single accession of A. halleri. Few studies have addressed nucleotide sequence polymorphism at loci known to govern adaptations. We thus sequenced 13 DNA segments across the HMA4 genomic region of multiple A. halleri individuals from diverse habitats. Compared to control loci flanking the three tandem HMA4 gene copies, a gradual depletion of nucleotide sequence diversity and an excess of low-frequency polymorphisms are hallmarks of positive selection in HMA4 promoter regions, culminating at HMA4-3. The accompanying hard selective sweep is segmentally eclipsed as a consequence of recurrent ectopic gene conversion among HMA4 protein-coding sequences, resulting in their concerted evolution. Thus, HMA4 coding sequences exhibit a network-like genealogy and locally enhanced nucleotide sequence diversity within each copy, accompanied by lowered sequence divergence between paralogs in any given individual. Quantitative PCR corroborated that, across A. halleri, three genomic HMA4 copies generate overall 20- to 130-fold higher transcript levels than in A. thaliana. Together, our observations constitute an unexpectedly complex profile of polymorphism resulting from natural selection for increased gene product dosage. We propose that these findings are paradigmatic of a category of multi-copy genes from a broad range of organisms. Our results emphasize that enhanced gene product dosage, in addition to neo- and sub-functionalization, can account for the genomic maintenance of gene duplicates underlying environmental adaptation. © 2013 Hanikenne et al.Funding was provided by, the Heisenberg Fellowship Kr1967/4-1, InP "PHIME" FOOD-CT-2006-016253, German Research Foundation Kr1967/3-2 and SPP1529 "ADAPTOMICS" Kr1967/10-1 (UK), European Union RTN "METALHOME" HPRN-CT-2002-00243 (SC, UK), the Max Planck Institute for Chemical Ecology, Jena, Germany (JK), Fonds de la Recherche Scientifique FNRS 2.4540.06, 2.4583.08 and 2.4581.10, "Fonds Spéciaux du Conseil de la Recherche", University of Liège (PM, MH). MH was a Research Associate of the FNRS. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Peer reviewe
    corecore